Binomial Theorem Calculator & Solver (2024)

1

Here, we show you a step-by-step solved example of binomial theorem. This solution was automatically generated by our smart calculator:

$\left(x+3\right)^5$

2

We can expand the expression $\left(x+3\right)^5$ using Newton's binomial theorem, which is a formula that allow us to find the expanded form of a binomial raised to a positive integer $n$. The formula is as follows: $\displaystyle(a\pm b)^n=\sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)a^{n-k}b^k=\left(\begin{matrix}n\\0\end{matrix}\right)a^n\pm\left(\begin{matrix}n\\1\end{matrix}\right)a^{n-1}b+\left(\begin{matrix}n\\2\end{matrix}\right)a^{n-2}b^2\pm\dots\pm\left(\begin{matrix}n\\n\end{matrix}\right)b^n$. The number of terms resulting from the expansion always equals $n + 1$. The coefficients $\left(\begin{matrix}n\\k\end{matrix}\right)$ are combinatorial numbers which correspond to the nth row of the Tartaglia triangle (or Pascal's triangle). In the formula, we can observe that the exponent of $a$ decreases, from $n$ to $0$, while the exponent of $b$ increases, from $0$ to $n$. If one of the binomial terms is negative, the positive and negative signs alternate.

$\left(\begin{matrix}5\\0\end{matrix}\right)\cdot 3^{0}x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3^{1}x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 3^{2}x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$

3

Calculate the power $3^{0}$

$\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3^{1}x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 3^{2}x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$

4

Calculate the power $3^{1}$

$\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 3^{2}x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$

5

Calculate the power $3^{2}$

$\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$

6

Calculate the power $3^{3}$

$\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 27x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$

7

Calculate the power $3^{4}$

$\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 27x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 81x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$

8

Calculate the power $3^{5}$

$\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 27x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 81x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243x^{0}$

9

Any expression to the power of $1$ is equal to that same expression

$\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 27x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 81x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243x^{0}$

10

Any expression (except $0$ and $\infty$) to the power of $0$ is equal to $1$

$\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 1\cdot 243$

11

Any expression multiplied by $1$ is equal to itself

$\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

12

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$

13

The factorial of $0$ is

$\frac{5!}{\left(5+0\right)!}x^{5}$

14

The factorial of $5$ is

$\frac{120}{\left(5+0\right)!}x^{5}$

15

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$

16

The factorial of $0$ is

$\frac{5!}{\left(5+0\right)!}x^{5}$

17

The factorial of $5$ is

$\frac{120}{\left(5+0\right)!}x^{5}$

18

Calculate the binomial coefficient $\left(\begin{matrix}5\\1\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(1!\right)\left(5-1\right)!}\cdot 3x^{4}$

19

The factorial of $1$ is

$\frac{5!}{\left(5-1\right)!}\cdot 3x^{4}$

20

The factorial of $5$ is

$\frac{120}{\left(5-1\right)!}\cdot 3x^{4}$

21

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$

22

The factorial of $0$ is

$\frac{5!}{\left(5+0\right)!}x^{5}$

23

The factorial of $5$ is

$\frac{120}{\left(5+0\right)!}x^{5}$

24

Calculate the binomial coefficient $\left(\begin{matrix}5\\1\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(1!\right)\left(5-1\right)!}\cdot 3x^{4}$

25

The factorial of $1$ is

$\frac{5!}{\left(5-1\right)!}\cdot 3x^{4}$

26

The factorial of $5$ is

$\frac{120}{\left(5-1\right)!}\cdot 3x^{4}$

27

Calculate the binomial coefficient $\left(\begin{matrix}5\\2\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(2!\right)\left(5-2\right)!}\cdot 9x^{3}$

29

The factorial of $5$ is

$\frac{120}{2\left(5-2\right)!}\cdot 9x^{3}$

30

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$

31

The factorial of $0$ is

$\frac{5!}{\left(5+0\right)!}x^{5}$

32

The factorial of $5$ is

$\frac{120}{\left(5+0\right)!}x^{5}$

33

Calculate the binomial coefficient $\left(\begin{matrix}5\\1\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(1!\right)\left(5-1\right)!}\cdot 3x^{4}$

34

The factorial of $1$ is

$\frac{5!}{\left(5-1\right)!}\cdot 3x^{4}$

35

The factorial of $5$ is

$\frac{120}{\left(5-1\right)!}\cdot 3x^{4}$

36

Calculate the binomial coefficient $\left(\begin{matrix}5\\2\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(2!\right)\left(5-2\right)!}\cdot 9x^{3}$

37

The factorial of $2$ is

$\frac{5!}{2\left(5-2\right)!}\cdot 9x^{3}$

38

The factorial of $5$ is

$\frac{120}{2\left(5-2\right)!}\cdot 9x^{3}$

39

Calculate the binomial coefficient $\left(\begin{matrix}5\\3\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(3!\right)\left(5-3\right)!}\cdot 27x^{2}$

40

The factorial of $3$ is

$\frac{5!}{6\left(5-3\right)!}\cdot 27x^{2}$

41

The factorial of $5$ is

$\frac{120}{6\left(5-3\right)!}\cdot 27x^{2}$

42

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$

43

The factorial of $0$ is

$\frac{5!}{\left(5+0\right)!}x^{5}$

44

The factorial of $5$ is

$\frac{120}{\left(5+0\right)!}x^{5}$

45

Calculate the binomial coefficient $\left(\begin{matrix}5\\1\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(1!\right)\left(5-1\right)!}\cdot 3x^{4}$

46

The factorial of $1$ is

$\frac{5!}{\left(5-1\right)!}\cdot 3x^{4}$

47

The factorial of $5$ is

$\frac{120}{\left(5-1\right)!}\cdot 3x^{4}$

48

Calculate the binomial coefficient $\left(\begin{matrix}5\\2\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(2!\right)\left(5-2\right)!}\cdot 9x^{3}$

49

The factorial of $2$ is

$\frac{5!}{2\left(5-2\right)!}\cdot 9x^{3}$

50

The factorial of $5$ is

$\frac{120}{2\left(5-2\right)!}\cdot 9x^{3}$

51

Calculate the binomial coefficient $\left(\begin{matrix}5\\3\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(3!\right)\left(5-3\right)!}\cdot 27x^{2}$

52

The factorial of $3$ is

$\frac{5!}{6\left(5-3\right)!}\cdot 27x^{2}$

53

The factorial of $5$ is

$\frac{120}{6\left(5-3\right)!}\cdot 27x^{2}$

54

Calculate the binomial coefficient $\left(\begin{matrix}5\\4\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(4!\right)\left(5-4\right)!}\cdot 81x$

55

The factorial of $4$ is

$\frac{5!}{24\left(5-4\right)!}\cdot 81x$

56

The factorial of $5$ is

$\frac{120}{24\left(5-4\right)!}\cdot 81x$

57

Subtract the values $5$ and $-1$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(5-2\right)!}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(5-3\right)!}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(5-4\right)!}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

58

Subtract the values $5$ and $-2$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(5-3\right)!}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(5-4\right)!}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

59

Subtract the values $5$ and $-3$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(5-4\right)!}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

60

Subtract the values $5$ and $-4$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

61

Add the values $5$ and $0$

$\frac{5!}{\left(0!\right)\left(5!\right)}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

62

Simplify the fraction

$\frac{1}{0!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

63

Multiply the fraction and term

$\frac{x^{5}}{0!}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

64

Multiplying the fraction by $x^{4}$

$\frac{x^{5}}{0!}+\frac{3\left(5!\right)\left(x^{4}\right)}{\left(1!\right)\left(4!\right)}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

65

Multiplying the fraction by $x^{3}$

$\frac{x^{5}}{0!}+\frac{3\left(5!\right)\left(x^{4}\right)}{\left(1!\right)\left(4!\right)}+\frac{9\left(5!\right)\left(x^{3}\right)}{\left(2!\right)\left(3!\right)}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

66

Multiplying the fraction by $x^{2}$

$\frac{x^{5}}{0!}+\frac{3\left(5!\right)\left(x^{4}\right)}{\left(1!\right)\left(4!\right)}+\frac{9\left(5!\right)\left(x^{3}\right)}{\left(2!\right)\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

67

Multiplying the fraction by $x$

$\frac{x^{5}}{0!}+\frac{3\left(5!\right)\left(x^{4}\right)}{\left(1!\right)\left(4!\right)}+\frac{9\left(5!\right)\left(x^{3}\right)}{\left(2!\right)\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$

68

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$

69

The factorial of $0$ is

$\frac{5!}{\left(5+0\right)!}x^{5}$

70

The factorial of $5$ is

$\frac{120}{\left(5+0\right)!}x^{5}$

71

Calculate the binomial coefficient $\left(\begin{matrix}5\\1\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(1!\right)\left(5-1\right)!}\cdot 3x^{4}$

72

The factorial of $1$ is

$\frac{5!}{\left(5-1\right)!}\cdot 3x^{4}$

73

The factorial of $5$ is

$\frac{120}{\left(5-1\right)!}\cdot 3x^{4}$

74

Calculate the binomial coefficient $\left(\begin{matrix}5\\2\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(2!\right)\left(5-2\right)!}\cdot 9x^{3}$

75

The factorial of $2$ is

$\frac{5!}{2\left(5-2\right)!}\cdot 9x^{3}$

76

The factorial of $5$ is

$\frac{120}{2\left(5-2\right)!}\cdot 9x^{3}$

77

Calculate the binomial coefficient $\left(\begin{matrix}5\\3\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(3!\right)\left(5-3\right)!}\cdot 27x^{2}$

78

The factorial of $3$ is

$\frac{5!}{6\left(5-3\right)!}\cdot 27x^{2}$

79

The factorial of $5$ is

$\frac{120}{6\left(5-3\right)!}\cdot 27x^{2}$

80

Calculate the binomial coefficient $\left(\begin{matrix}5\\4\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(4!\right)\left(5-4\right)!}\cdot 81x$

81

The factorial of $4$ is

$\frac{5!}{24\left(5-4\right)!}\cdot 81x$

82

The factorial of $5$ is

$\frac{120}{24\left(5-4\right)!}\cdot 81x$

83

Calculate the binomial coefficient $\left(\begin{matrix}5\\5\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\left(\frac{5!}{\left(5!\right)\left(5-5\right)!}\right)\cdot 243$

84

Simplify the fraction

$\left(\frac{1}{\left(5-5\right)!}\right)\cdot 243$

85

Subtract the values $5$ and $-5$

$\frac{x^{5}}{0!}+\frac{3\left(5!\right)\left(x^{4}\right)}{\left(1!\right)\left(4!\right)}+\frac{9\left(5!\right)\left(x^{3}\right)}{\left(2!\right)\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243\left(5!\right)}{\left(5!\right)\left(0!\right)}$

86

Simplify the fraction

$\frac{x^{5}}{0!}+\frac{3\left(5!\right)\left(x^{4}\right)}{\left(1!\right)\left(4!\right)}+\frac{9\left(5!\right)\left(x^{3}\right)}{\left(2!\right)\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

87

The factorial of $0$ is

$\frac{x^{5}}{1}+\frac{3\left(5!\right)\left(x^{4}\right)}{\left(1!\right)\left(4!\right)}+\frac{9\left(5!\right)\left(x^{3}\right)}{\left(2!\right)\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

88

The factorial of $1$ is

$\frac{x^{5}}{1}+\frac{3\left(5!\right)\left(x^{4}\right)}{4!}+\frac{9\left(5!\right)\left(x^{3}\right)}{\left(2!\right)\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

89

The factorial of $4$ is

$\frac{x^{5}}{1}+\frac{3\left(5!\right)\left(x^{4}\right)}{24}+\frac{9\left(5!\right)\left(x^{3}\right)}{\left(2!\right)\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

90

The factorial of $5$ is

$\frac{x^{5}}{1}+\frac{3\cdot 120x^{4}}{24}+\frac{9\left(5!\right)\left(x^{3}\right)}{\left(2!\right)\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

91

The factorial of $2$ is

$\frac{x^{5}}{1}+\frac{3\cdot 120x^{4}}{24}+\frac{9\left(5!\right)\left(x^{3}\right)}{2\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

92

Multiply $3$ times $120$

$\frac{x^{5}}{1}+\frac{360x^{4}}{24}+\frac{9\left(5!\right)\left(x^{3}\right)}{2\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

93

Any expression divided by one ($1$) is equal to that same expression

$x^{5}+\frac{360x^{4}}{24}+\frac{9\left(5!\right)\left(x^{3}\right)}{2\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

94

Take $\frac{360}{24}$ out of the fraction

$x^{5}+15x^{4}+\frac{9\left(5!\right)\left(x^{3}\right)}{2\left(3!\right)}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

95

The factorial of $3$ is

$x^{5}+15x^{4}+\frac{9\left(5!\right)\left(x^{3}\right)}{2\cdot 6}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

96

The factorial of $5$ is

$x^{5}+15x^{4}+\frac{9\cdot 120x^{3}}{2\cdot 6}+\frac{27\left(5!\right)\left(x^{2}\right)}{\left(3!\right)\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

97

The factorial of $3$ is

$x^{5}+15x^{4}+\frac{9\cdot 120x^{3}}{2\cdot 6}+\frac{27\left(5!\right)\left(x^{2}\right)}{6\left(2!\right)}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

98

The factorial of $2$ is

$x^{5}+15x^{4}+\frac{9\cdot 120x^{3}}{2\cdot 6}+\frac{27\left(5!\right)\left(x^{2}\right)}{6\cdot 2}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

99

The factorial of $5$ is

$x^{5}+15x^{4}+\frac{9\cdot 120x^{3}}{2\cdot 6}+\frac{27\cdot 120x^{2}}{6\cdot 2}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

100

Multiply $2$ times $6$

$x^{5}+15x^{4}+\frac{9\cdot 120x^{3}}{12}+\frac{27\cdot 120x^{2}}{6\cdot 2}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

101

Multiply $9$ times $120$

$x^{5}+15x^{4}+\frac{1080x^{3}}{12}+\frac{27\cdot 120x^{2}}{6\cdot 2}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

102

Multiply $6$ times $2$

$x^{5}+15x^{4}+\frac{1080x^{3}}{12}+\frac{27\cdot 120x^{2}}{12}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

103

Multiply $27$ times $120$

$x^{5}+15x^{4}+\frac{1080x^{3}}{12}+\frac{3240x^{2}}{12}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

104

Take $\frac{1080}{12}$ out of the fraction

$x^{5}+15x^{4}+90x^{3}+\frac{3240x^{2}}{12}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

105

Take $\frac{3240}{12}$ out of the fraction

$x^{5}+15x^{4}+90x^{3}+270x^{2}+\frac{81\left(5!\right)x}{\left(4!\right)\left(1!\right)}+\frac{243}{0!}$

106

The factorial of $4$ is

$x^{5}+15x^{4}+90x^{3}+270x^{2}+\frac{81\left(5!\right)x}{24\left(1!\right)}+\frac{243}{0!}$

107

The factorial of $1$ is

$x^{5}+15x^{4}+90x^{3}+270x^{2}+\frac{81\left(5!\right)x}{24}+\frac{243}{0!}$

108

The factorial of $5$ is

$x^{5}+15x^{4}+90x^{3}+270x^{2}+\frac{81\cdot 120x}{24}+\frac{243}{0!}$

109

The factorial of $0$ is

$x^{5}+15x^{4}+90x^{3}+270x^{2}+\frac{81\cdot 120x}{24}+\frac{243}{1}$

110

Multiply $81$ times $120$

$x^{5}+15x^{4}+90x^{3}+270x^{2}+\frac{9720x}{24}+\frac{243}{1}$

111

Divide $243$ by $1$

$x^{5}+15x^{4}+90x^{3}+270x^{2}+\frac{9720x}{24}+243$

112

Take $\frac{9720}{24}$ out of the fraction

$x^{5}+15x^{4}+90x^{3}+270x^{2}+405x+243$

Final answer to the problem

$x^{5}+15x^{4}+90x^{3}+270x^{2}+405x+243$

Binomial Theorem Calculator & Solver (2024)

FAQs

How to solve binomial theorem using a calculator? ›

The procedure to use the binomial expansion calculator is as follows:
  1. Step 1: Enter a binomial term and the power value in the respective input field.
  2. Step 2: Now click the button “Expand” to get the expansion.
  3. Step 3: Finally, the binomial expansion will be displayed in the new window.

How to calculate binomial theorem? ›

The binomial theorem is a formula that can be used to expand a two-term expression raised to any power. The formula is: ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k . This formula can be used to expand an exponentiated binomial or also be used to quickly identify a specific term within a binomial expansion.

Is The binomial theorem hard or easy? ›

Binomial For a positive integral exponent n, the theorem can be used to expand the binomial (a+b) algebraically. The calculation becomes difficult and time-consuming as the power of an expression grows. So, even the x20 coefficient may be easily calculated using this reasoning.

What grade do you learn the binomial theorem? ›

Binomial Theorem - GHCI Grade 12 Mathematics of Data Management.

How do you solve a binomial by hand? ›

Using the Binomial Formula in a word problem
  1. Step 1 : Identify what makes up one trial, what a success is, and what a failure is.
  2. Step 2: Identify n, the number of trials; p, the probability of success; and x, the number of successes.
  3. Step 3: Calculate q, the probability of failure. q = 1 - p.
Mar 29, 2021

How to use a calculator for binomial? ›

To generate a binomial probability distribution, we simply use the binomial probability density function command without specifying an x value. In other words, the syntax is binompdf(n,p). Your calculator will output the binomial probability associated with each possible x value between 0 and n, inclusive.

What is the formula for the binomial theorem? ›

The general term of the binomial expansion of (x + y)n is Tr+1 = nCr xn-ryr.. The r-value for the term is one less than the number of the term. In the general term, the sum of the exponents of both the terms is equal to n.

How do I solve a binomial? ›

To solve a binomial problem, if your x term is being multiplied by a number, you'll divide both sides of your equation by that number. If your x term is being divided by a number, you'll multiply both sides of your equation by that number.

Who is the father of the binomial theorem? ›

Isaac Newton is generally credited with discovering the generalized binomial theorem, valid for any real exponent, in 1665.

What is an example of a binomial? ›

A binomial is an algebraic expression that has two non-zero terms. Examples of a binomial expression: a2 + 2b is a binomial in two variables a and b. 5x3 – 9y2 is a binomial in two variables x and y.

How is the binomial theorem used in real life? ›

It is essential for forecasting and understanding weather trends. We can use the existing data to forecast the weather for the next few days or weeks. This has a significant impact on our lives. The binomial theorem can also be used to forecast impending disasters.

What is the hardest theorem in math? ›

In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2.

What is the hardest concept in algebra? ›

Top-Five Most Difficult Algebra Concepts

According to study, the following algebra topics were found to be the most difficult for students to master: 1) - Multiplying Polynomials by Monomials. 2) - Modeling Using Exponential Functions. 3) - Averaging Data with Different Units.

What is the hardest type of math problem? ›

10 World's Hardest Math Problems With Solutions and Examples That Will Blow Your Mind
  • The Four Color Theorem.
  • Fermat's Last Theorem.
  • The Monty Hall Problem.
  • The Travelling Salesman Problem.
  • The Twin Prime Conjecture.
  • The Poincaré Conjecture.
  • The Goldbach Conjecture.
  • The Riemann Hypothesis.
Aug 31, 2023

How to solve a binomial equation? ›

To solve a binomial problem, if your x term is being multiplied by a number, you'll divide both sides of your equation by that number. If your x term is being divided by a number, you'll multiply both sides of your equation by that number.

What is the simple form of binomial theorem? ›

The binomial theorem formula is (a+b)n= ∑nr=0nCr an-rbr, where n is a positive integer and a, b are real numbers, and 0 < r ≤ n. This formula helps to expand the binomial expressions such as (x + a)10, (2x + 5)3, (x - (1/x))4, and so on.

What is the binomial theorem in simple terms? ›

binomial theorem, statement that for any positive integer n, the nth power of the sum of two numbers a and b may be expressed as the sum of n + 1 terms of the form. Yang Hui's triangle.

References

Top Articles
Latest Posts
Article information

Author: Barbera Armstrong

Last Updated:

Views: 6143

Rating: 4.9 / 5 (59 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Barbera Armstrong

Birthday: 1992-09-12

Address: Suite 993 99852 Daugherty Causeway, Ritchiehaven, VT 49630

Phone: +5026838435397

Job: National Engineer

Hobby: Listening to music, Board games, Photography, Ice skating, LARPing, Kite flying, Rugby

Introduction: My name is Barbera Armstrong, I am a lovely, delightful, cooperative, funny, enchanting, vivacious, tender person who loves writing and wants to share my knowledge and understanding with you.